

for Construction Prague Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 23/0566 of 20/07/2023

Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague							
Trade name of the construction product	E600+						
Product family to which the construction product belongs	Product area code: 33 Bonded injection type anchor for use in cracked and uncracked concrete						
Manufacturer	FDG (Fasteners Direct Global Ltd) 20 Mansel Dr, Warkworth, Auckland, 0910 New Zealand						
Manufacturing plant	Manufacturing Plant C						
This European Technical Assessment contains	22 pages including 19 Annexes which form an integral part of this assessment.						
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601 Bonded fasteners for use in concrete						

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The E600+ with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1 to C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 6 to C 7
Displacements under short-term and long-term loading	See Annex C 8
Characteristic resistance and displacement for seismic performance categories C1 and C2	See Annex C 9 to C 11

3.2 Hygiene, health and environment (BWR 3)

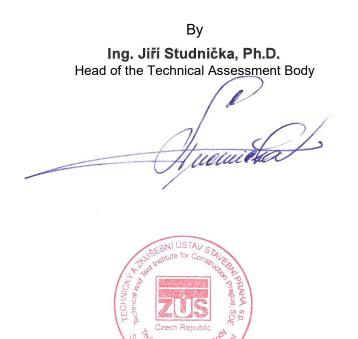
No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

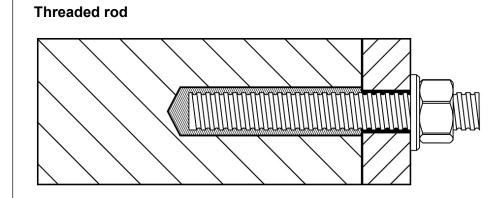
4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

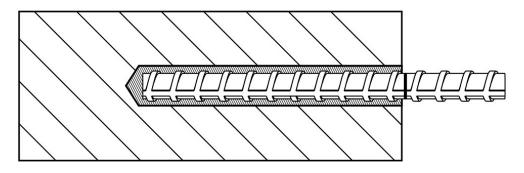

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

¹ Official Journal of the European Communities L 254 of 08.10.1996

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD


The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Issued in Prague on 20.7.2023

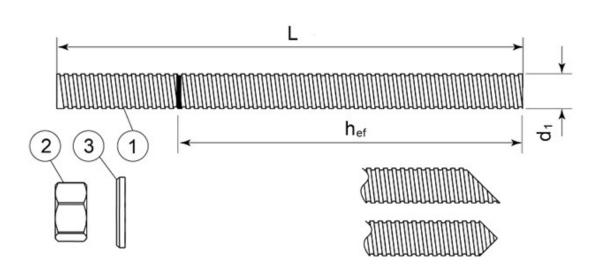


technicke

² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Reinforcing bar

E600+


Product description Installed conditions Annex A 1

Mortar cartridges Side by side cartridge E600+	585 ml
Marking of the mortar o Identifying mark of the pr processing time	cartridges roducer, Trade name, Charge code number, Storage life, Curing and
Mixing nozzle EZ-Flow mixing nozzle	

E600+

Product description Injection system Annex A 2

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

	zinc plated ≥ 5 µm acc. to EN ISO 40								
, , , ,	Hot-dip galvanized ≥ 40 µm acc. to E								
Steel, zinc diffusion coating \geq 15 µm acc. to EN 13811									
	Anchor rod	Steel, EN 10087 or EN 10263 Property class 4.6, 5.8, 8.8, 10.9* EN ISO 898-1							
	Hexagon nut EN ISO 4032	According to threaded rod, EN 20898-2							
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod							
Stainle	ess steel								
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506							
	Hexagon nut EN ISO 4032	According to threaded rod							
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod							
ligh co	orrosion resistant steel								
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1							
	Hexagon nut EN ISO 4032	According to threaded rod							
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod							

E600+

Product description Threaded rod and materials

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form	rm Bars and de-coiled ro			
Class	В	С		
Characteristic yield strength fyk or fo	_{0,2k} (MPa)	400 te	o 600	
Minimum value of $k = (f_t/f_y)_k$		≥ 1,08	≥ 1,15 < 1,35	
Characteristic strain at maximum for	Characteristic strain at maximum force ε _{uk} (%)			
Bendability		Bend/Rebend test		
Maximum deviation from nominal	Nominal bar size (mm)			
mass (individual bar) (%)	≤ 8	±6	6,0	
	> 8	±4,5		
Bond: Minimum relative rib area,	Nominal bar size (mm)			
f _{R,min}	8 to 12	0,0	40	
	> 12	0,0	56	

E600+

Product description Rebars and materials

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load
- Seismic actions category C1 (max w = 0,5 mm):
 - threaded rod size M8, M10, M12, M16, M20, M24, M27, M30
 rebar size Ø10, Ø12, Ø16, Ø20, Ø25, Ø32
- Seismic actions category C2 (max w = 0,8 mm): threaded rod size M12, M16, M20

Base materials

- Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013.

Temperature range:

• -40°C to +70°C (max. short. term temperature +70°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- 11 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- I2 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

Installation:

- Hole drilling by hammer drilling, dustless drilling or diamond core drilling mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

E600+

Intended use Specifications

HDB – Hollow Drill Bit System

Heller Duster Expert hollow drill bit SDS-Plus ≤ 16mm SDS-Max ≥ 16mm

Class M vacuum Minimum flow rate 266 m3/h (74 l/s)

Brush extensions

C. S. Concession of the local division of th

E600+

Intended use Hollow drill bit system, Cleaning brush

SOLID SUBSTRATE INSTALLATION METHOD

1. Using the SDS hammer drill (HD) in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.

2. Select the correct air lance, insert to the bottom of the hole, and depress the trigger for 2 seconds. The compressed air must be clean and free from water and oil, with a minimum pressure of 90 psi (6 bar). Perform the blowing operation twice.

3. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

4. Repeat step 2 (blowing operation x2)

5. Repeat step 3 (brushing operation x2)

6. Repeat step 2 (blowing operation x2)

7. Select the most appropriate static mixer nozzle, checking that the mixing elements are present and t for purpose. Never modify the mixer. Attach the mixer nozzle to the cartridge. Check the dispensing tool is in good working order. Place the cartridge into the dispensing tool.

8. Extrude some resin to waste until an even coloured mixture is achieved. The cartridge is now ready for use.

9. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately ³/₄ full and remove the nozzle from the hole.

10. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

11. Clean any excess resin from around the mouth of the hole.

12. Refer to the working and loading times within the tables to determine the appropriate cure time.

13. Position the fixture and tighten the anchor to the appropriate installation torque. Do not over-torque the anchor, as this could adversely affect its performance.

B

DEEP EMBEDMENT & OVERHEAD INSTALLATION METHOD

1a. Perform steps 1-8 under "solid substrate installation method".

2a. Attach the correct diameter and length extension tube to the nozzle. Select the correct diameter resin stopper for the application, then push and screw the extension tube into the resin stopper. This is held in place with a coarse internal thread. The resin stopper is a reusable accessory.

3a. Push the resin stopper and extension tube to the back of the drill hole.

4a. Ensure the extension tube is angled to allow free movement of the resin stopper as the resin is extruded.

5a. Continue from step 10 under "solid substrate installation method".

DIAMOND CORE DRILLING

1b. Using a diamond core drill (DD) and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth then remove the concrete core.

2b. Starting from the back of the hole, flush with pressurised water a minimum of two times and until there is only clean water.

3b. Select the correct size hole cleaning brush. Ensure that the brush is in good condition and of the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom. Withdraw with a twisting motion. There should be a positive interaction between the bristles of the brush and the sides of the drilled hole. Perform the brushing operation twice.

4b. Repeat step 2b (ushing operation x2).

5b. Repeat step 3b (brushing operation x2).

6a. Using the correct air lance and starting from the back of the hole and withdrawing, perform a minimum of two blowing operations and ensure that the hole is clear of debris and excess water.

7a. Continue from step 7 under "solid substrate installation method".

DUSTLESS DRILLING

1c. Using the specified hollow drill bit (HDB) and vacuum system and following the manufacturer's instructions, drill the specified diameter hole to the correct embedment depth. Ensure that the minimum vacuum specifications are met and that the vacuum is turned on.

2c. The hole should be inspected to ensure the system has worked correctly. If the hole is clear of dust and debris, no further cleaning is required.

3c. Continue from step 7 under "solid substrate installation method".

E600+

Intended use Installation procedure Annex B 3

Table B1: Installation parameters of threaded rod

Size			M8	M10	M12	M16	M20	M24	M27	M30		
Nominal drill hole diameter	Ød ₀	[mm]	10	12	14	18	22	26	30	35		
Cleaning brush			S11HF	S14HF	S14/15HF	S22HF	S24HF	S31HF	S31HF	S38HF		
Torque moment	max T _{fixt}	[Nm]	10	20	40	80	120	160	180	200		
Embedment depth for h _{ef,min}	h _{ef}	[mm]	60	60	70	80	90	96	108	120		
Embedment depth for hef,max	h _{ef}	[mm]	160	200	240	320	400	480	540	600		
Depth of drill hole	h ₀	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5		
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	50	60		
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	50	60		
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀						

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	Ød ₀	[mm]	12	14	16	20	25	32	40
Cleaning brush			S12/13HF	S14/15HF	S18HF	S22HF	S27HF	S35HF	S43HF
Torque moment	max T _{fxt}	[Nm]	10	20	40	80	120	180	200
Embedment depth for h _{ef,min}	h _{ef}	[mm]	60	60	70	80	90	100	128
Embedment depth for hef,max	h _{ef}	[mm]	160	200	240	320	400	500	640
Depth of drill hole	h ₀	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5	h _{ef} +5
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	70
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	70
Minimum thickness of member	h_{min} [mm] h_{ef} + 30 mm \ge 100 mm h_{ef} + 2d ₀				h _{ef} + 30 mm ≥ 100 mm				

Table B3: Minimum curing time

Base Material Temperature [°C]	Cartridge Temperature [°C]	T Work [mins]	T Load [hrs]
+5 +5°C to +10	Minimum +10	300 150	24
+10°C to +15	+10°C to +15	40	18
+15°C to +20	+15°C to +20	25	12
+20°C to +25	+20°C to +25	18	8
+25°C to +30	+25°C to +30	12	6
+30°C to +35	+30°C to +35	8	4
+35°C to +40	+35°C to +40	6	2
	Ensure cartridge is ≥ 10°0	0	

T Work is typical gel time at highest base material temperature in the range. T Load is minimum set time required until load can be applied at the lowest temperature in the range.

E600+	
Intended use Installation parameters	Annex B 4
Curing time	

Table C1: Design method EN 1992-4 Steel failure - Characteristic values of resistance to tension load of threaded rod

Steel failure – Characteristic resista	nce									
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				2,	00			
Steel grade 5.8	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]				1,	50			
Steel grade 8.8	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,	50			
Steel grade 10.9	N _{Rk,s}	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]				1,	33			
Stainless steel grade A2-70, A4-70	N _{Rk,s}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	87			
Stainless steel grade A4-80	N _{Rk,s}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]				1,	60			
Stainless steel grade 1.4529	N _{Rk,s}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]	1,50							
Stainless steel grade 1.4565	N _{Rk,s}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]				1,	87			

Table C2: Design method EN 1992-4

Steel failure - Characteristic values of resistance to tension load of rebar

Steel failure – Characteristic resistance									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	N _{Rk,s}	[kN]	28	43	62	111	173	270	442
Partial safety factor	γMs	[-]				1,4			

E600+

Performances

Steel failure characteristic resistance

Table C3: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Hammer drilling, Dustless drilling			
Size			M8 M10 M12 M16 M20 M24 M27 M30
Characteristic bond resistance in	uncracke	d concre	te for a working life of 50 years and 100 years
Dry and wet concrete, Flooded hole			14,0 13,0 13,0 12,0 12,0 11,0 10,0 9,0
nstallation safety factor			• • • • • • • • • • • • •
Dry, wet concrete	γinst	[-]	1,0
Hammer drilling – Flooded hole	γinst	[-]	1,0
Dustless drilling – Flooded hole	γinst		1,2
			for a working life of 50 years and 100 years
Dry and wet concrete, Flooded hole	τ _{Rk,cr}	[N/mm ²]	8,0 8,0 7,5 7,5 7,0 5,0 5,0
nstallation safety factor			
Dry, wet concrete	γinst		1,0
Hammer drilling – Flooded hole	γinst		1,0
Dustless drilling – Flooded hole	γinst	[-]	1,2
Factor for influence of sustained load for a working life 50 years	$\Psi^0{}_{sus}$	[-]	0,74
C25	/30		1,02
C30			1,04
Factor for concrete		[-]	1,06
C40	/50	[-]	1,07
C45			1,08
C50	/60		1,09
Concrete cone failure			
Factor for concrete cone failure	kucr,N		11
or uncracked concrete	Nuci,N	[-]	
Factor for concrete cone failure	k _{cr,N}	[-]	7,7
or cracked concrete			· · · · · · · · · · · · · · · · · · ·
Edge distance	C _{cr,N}	[mm]	1,5 h _{ef}
Splitting failure			
Size			M8 M10 M12 M16 M20 M24 M27 M30
Edge distance	Ccr,sp	[mm]	2 h _{ef}
Spacing	Scr,sp	[mm]	2 C _{cr,sp}
Spacing	S cr,sp	[mm]	2 Ccr,sp
600+			
600+ erformances ammer drilling, Dustless drilling			Annex C 2

Table C4	: Des	ign	methe	od EN 19	992-4				
	Cha	ract	eristi	c values	of resis	tanc	e to tensior	load of reba	ar

Combined pullout and conc		ilure i	n concret	e C20/2	5					
Hammer drilling, Dustless	drilling				C	-	1			-
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resist					1	-			0 years	
Dry and wet concrete, Floode	d hole	$ au_{Rk,ucr}$	[N/mm ²]	12,0	12,0	12,0	11,0	11,0	11,0	7,0
Installation safety factor										
Hammer drilling - Dry, wet c		γinst	[-]				1,0			
Dustless drilling - Dry, wet c	oncrete	γinst	[-]				1,2			
Flooded hole		γinst	[-]				1,2			
Characteristic bond resist	ance in cra	cked	concrete	for a w	orking li	fe of 50	years a	nd 100 y	ears	
Dry and wet concrete, Floode	d hole	$\tau_{\text{Rk,cr}}$	[N/mm ²]	7,0	10,0	9,0	9,0	8,0	8,0	5,0
Installation safety factor										
Hammer drilling - Dry, wet c		γinst	[-]				1,0			
Dustless drilling - Dry, wet c	oncrete	γinst	[-]				1,2			
Flooded hole		γinst	[-]				1,2			
Factor for influence of sustai for a working life 50 years	ined load	Ψ^0_{sus}	[-]				0,74			
Factor for concrete	C25/30 C30/37 C35/45 C40/50 C45/55 C50/60	Ψc	[-]				1,02 1,04 1,06 1,07 1,08 1,09			
Concrete cone failure			-							
Factor for concrete cone fail for uncracked concrete		kucr,N	[-]				11			
Factor for concrete cone fail for cracked concrete	ure	k _{cr,N}					7,7			
Edge distance		Ccr,N	[mm]				1,5 h _{ef}			
Splitting failure					Ĩ	Ĩ	Ī	1	-	-
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance		C _{cr,sp}	[mm]				2 h _{ef}			
Spacing		Scr,sp	[mm]				$2 c_{\text{cr,sp}}$			

E600+	
Performances Hammer drilling, Dustless drilling Characteristic resistance for tension loads - rebar	Annex C 3

Combined pullout and concrete	cone fail	ure	in concre	te C20/	25						
Diamond core drilling							1		r	1	1
Size	-		-	M8	M10	M12	M16	M20	M24	M27	M30
Characteristic bond resistance											0.0
Dry and wet concrete, Flooded hole	θ τ _r	k,ucr	[N/mm ²]	14,0	13,0	13,0	12,0	12,0	10,0	10,0	9,0
Installation safety factor			F 1								
Dry, wet concrete Flooded hole		γinst	F 7					l,0 I,2			
Characteristic bond resistance		γinst		for ow	orking	life of		,			
Dry and wet concrete, Flooded hole			[N/mm ²]	8,0	8,0	7,5	50 yea 7,5	7,0	7,0	5,0	5,0
Characteristic bond resistance					-				7,0	5,0	5,0
Dry and wet concrete, Flooded hole			[N/mm ²]		7,0	6,5	6,0	6,0	6,0	5,0	4,5
Installation safety factor	5 1	Rk,cr	[IN/IIIII-]	0,5	7,0	0,5	0,0	0,0	0,0	5,0	4,5
		<u>.</u>	[-]				-				
Dry, wet concrete Flooded hole		<u>γinst</u> Vinct	[-]					l,0 l,2			
Flooded hole Factor for influence of sustained loa	ad for	γinst						,			
a working life 50 years	Ψ	0 sus	[-]				0	,76			
	25/30						1	,02			
	30/37							,02			
C	35/45							,06			
Lactor for concrate	40/50 ^u	μc	[-]					,07			
	45/55							,08			
С	50/60							,09			
Concrete cone failure											
Factor for concrete cone failure	Ŀ							1 4			
for uncracked concrete	K	ucr,N						11			
Factor for concrete cone failure	1	Kcr,N	[-]				7	7,7			
for cracked concrete	ſ	NCF,IN									
Edge distance	(Ccr,N	[mm]				1,5	5 h _{ef}			
Splitting failure							-			-	-
Size				M8	M10	M12	M16	M20	M24	M27	M3
Edge distance	Cc	r,sp	[mm]					h _{ef}			
Spacing	Sc	r,sp	[mm]				20	Ccr,sp			

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ø25 Ø3 ears 0,0 7,0 5,0 4,5 6,0 4,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ears 0,0 7,0 5,0 4,5
Dry and wet concrete, Flooded hole $\tau_{Rk,ucr}$ $[N/mm^2]$ 12,011,012,011,010,01Installation safety factorDry, wet concrete γ_{inst} $[-]$ 1,0Flooded hole γ_{inst} $[-]$ 1,2Characteristic bond resistance in cracked concrete for a working life of 50 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 7,07,07,06,0Characteristic bond resistance in cracked concrete for a working life of 100 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Characteristic bond resistance in cracked concrete for a working life of 100 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Installation safety factor $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0 $\tau_{Rk,cr}$ Dry, wet concrete γ_{inst} $[-]$ 1,01,01,2Flooded hole γ_{inst} $[-]$ 1,21,2Factor for influence of sustained load for a working life 50 years ψ^0_{sus} $[-]$ 0,76	0,0 7,0 5,0 4,5
Installation safety factor γ_{inst} [-]1,0Dry, wet concrete γ_{inst} [-]1,2Flooded hole γ_{inst} [-]1,2Characteristic bond resistance in cracked concrete for a working life of 50 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 7,07,07,06,0Characteristic bond resistance in cracked concrete for a working life of 100 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Dry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Installation safety factor $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Dry, wet concrete γ_{inst} [-]1,2Flooded hole γ_{inst} [-]1,2Factor for influence of sustained load for a working life 50 years ψ^0_{sus} [-]0,76	5,0 4,5
Dry, wet concrete γ_{inst} [-]1,0Flooded hole γ_{inst} [-]1,2Characteristic bond resistance in cracked concrete for a working life of 50 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 7,07,07,06,0Characteristic bond resistance in cracked concrete for a working life of 100 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Characteristic bond resistance in cracked concrete for a working life of 100 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Installation safety factorDry, wet concrete γ_{inst} [-]1,0Flooded hole γ_{inst} [-]1,2Factor for influence of sustained load for a working life 50 years ψ^0_{sus} [-]0,76	· · ·
Flooded hole γ_{inst} [-]1,2Characteristic bond resistance in cracked concrete for a working life of 50 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 7,07,07,06,0Characteristic bond resistance in cracked concrete for a working life of 100 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Dry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Installation safety factor $\tau_{Rk,cr}$ $[N/mst]$ $[-]$ 1,0Dry, wet concrete γ_{inst} $[-]$ 1,2Flooded hole γ_{inst} $[-]$ 0,76	· · ·
Characteristic bond resistance in cracked concrete for a working life of 50 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 7,07,07,06,0Characteristic bond resistance in cracked concrete for a working life of 100 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Dry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Installation safety factorDry, wet concrete γ_{inst} [-]1,0Flooded hole γ_{inst} [-]1,2Factor for influence of sustained load for a working life 50 years ψ^0_{sus} [-]0,76	· · ·
Dry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 7,07,07,06,0Characteristic bond resistance in cracked concrete for a working life of 100 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ 6,07,07,06,0Installation safety factorDry, wet concrete γ_{inst} [-]1,0Flooded hole γ_{inst} [-]1,2Factor for influence of sustained load for a working life 50 years ψ^0_{sus} [-]0,76	· · ·
Characteristic bond resistance in cracked concrete for a working life of 100 yearsDry and wet concrete, Flooded hole $\tau_{Rk,cr}$ $[N/mm^2]$ $6,0$ $7,0$ $7,0$ $7,0$ $6,0$ Installation safety factorDry, wet concrete γ_{inst} $[-]$ $1,0$ Flooded hole γ_{inst} $[-]$ $1,2$ Factor for influence of sustained load for a working life 50 years ψ^0_{sus} $[-]$ $0,76$	· · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5,0 4,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5,0 4,3
Dry, wet concrete γ_{inst} [-]1,0Flooded hole γ_{inst} [-]1,2Factor for influence of sustained load for a working life 50 years ψ^0_{sus} [-]0,76	
Flooded hole γ_{inst} [-]1,2Factor for influence of sustained load for a working life 50 years ψ^0_{sus} [-]0,76	
Factor for influence of sustained load ψ^{0}_{sus} [-] 0,76	
for a working life 50 years	
IOF A WORKING INE SO YEARS	
C25/30 1,02	
C30/37 1,02	
C35/45 1.06	
Factor for concrete $C_{40/50}^{C_{30/45}} \Psi_{c}$ [-] [,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	
C45/55 1,08	
C50/60 1,09	
Factor for concrete cone failure k _{cr,N} [-] 7,7 or cracked concrete concrete concrete 1,5 h _{ef}	
	1
	025 Ø3
Splitting failureSizeØ8Ø10Ø12Ø16Ø20ØEdge distanceC _{cr,sp} [mm]2 h _{ef} 2SpacingS _{cr,sp} [mm]2 C _{cr,sp} 2	025 Ø3

Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel grade 4.6	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Partial safety factor	γMs	[-]	,	12	17	1	67		52	112
Steel grade 5.8	V _{Rk,s}		9	15	21	39	61	88	115	140
Partial safety factor	γMs	[-]		10	21		25	00	110	140
Steel grade 8.8	V _{Rk,s}		15	23	34	63	98	141	184	224
Partial safety factor	γMs		10	20	04		25	171	104	
Steel grade 10.9	V _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	vrkk,s γMs		10	20	72		,5	177	200	201
Stainless steel grade A2-70, A4-70	V _{Rk,s}		13	20	30	55	,0	124	161	196
Partial safety factor	γMs		10	20	00		56	124	101	100
Stainless steel grade A4-80	V _{Rk,s}		15	23	34	63	98	141	184	224
Partial safety factor	ν κκ,s γMs		15	20	54		33	141	104	224
Stainless steel grade 1.4529	V _{Rk,s}	[kN]	13	20	30	55	86	124	161	196
Partial safety factor		[-]	13	20	- 30		25	124	101	190
Stainless steel grade 1.4565	γMs		13	20	30	55	86	124	161	196
Partial safety factor	V _{Rk,s}		13	20	30		56	124	101	190
Characteristic resistance of group of fa	γMs atoporo	[-]				l,	50			
Ductility factor $k_7 = 1,0$ for steel with rup		ngation	$\Lambda_{-} > 90$	4						
Ductility factor $K_7 = 1,0$ for steel with tup		Iyalion	H 5 - 0 /	0						
Steel failure with lever arm										
Size			M8	M10	M12	M16	M20	M24	M27	M30
	M ^o Rk,s	[N.m]	15	30	52	133	260	449	666	900
Steel grade 4.6 Partial safety factor		[N.III] [-]	15	30	52		67	449	000	900
•	γMs		10	27	66			561	022	110
Steel grade 5.8 Partial safety factor	M ^o Rk,s		19	37	66	166	<u>325</u> 25	561	832	112
	γMs Mo	[-]	20	60	105	, <u> </u>	,	000	1000	4700
Steel grade 8.8	M ^o Rk,s		30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]	07	75	404	,	25	4400	4004	004
Steel grade 10.9	M ^o Rk,s		37	75	131	333	649 50	1123	1664	2249
Partial safety factor	γMs		00	50	00			700	4405	457
Stainless steel grade A2-70, A4-70	M ^o Rk,s		26	52	92	233	454	786	1165	1574
Partial safety factor	γMs			00	405		56	000	4000	470
Stainless steel grade A4-80		[N.m]	30	60	105	266	519	898	1332	1799
Partial safety factor	γMs	[-]				, · · · · · · · · · · · · · · · · · · ·	33			
Stainless steel grade 1.4529	M ^o Rk,s		26	52	92	233	454	786	1165	1574
Partial safety factor	γMs	[-]					25			
Stainland atoplarade 4 AFCF	M ^o Rk,s		26	52	92	233	454	786	1165	1574
						1,	56			
Partial safety factor	γMs	[-]								
Partial safety factor Concrete pryout failure	•									
Partial safety factor Concrete pryout failure	γ _{Ms} k ₈					2	2			
Partial safety factor Concrete pryout failure Factor for resistance to pry-out failure	•					:	2			_
Partial safety factor Concrete pryout failure Factor for resistance to pry-out failure Concrete edge failure	•									
Partial safety factor Concrete pryout failure Factor for resistance to pry-out failure Concrete edge failure Size	k ₈	[-]	M8	M10	M12	M16	M20	M24	M27	
Partial safety factor Concrete pryout failure Factor for resistance to pry-out failure Concrete edge failure Size Outside diameter of fastener	k ₈ d _{nom}	[mm]	M8 8	M10	12	M16 16	M20 20	24	M27 27	M30 30
Partial safety factor Concrete pryout failure Factor for resistance to pry-out failure Concrete edge failure Size Outside diameter of fastener	k ₈	[-]			12	M16	M20 20	24		
Partial safety factor Concrete pryout failure Factor for resistance to pry-out failure Concrete edge failure Size Outside diameter of fastener Effective length of fastener	k ₈ d _{nom}	[mm]			12	M16 16	M20 20	24		
Partial safety factor Concrete pryout failure Factor for resistance to pry-out failure Concrete edge failure Size Outside diameter of fastener Effective length of fastener	k ₈ d _{nom}	[mm]			12	M16 16	M20 20	24		
Stainless steel grade 1.4565 Partial safety factor Concrete pryout failure Factor for resistance to pry-out failure Concrete edge failure Size Outside diameter of fastener Effective length of fastener 600+ erformances	k ₈ d _{nom}	[mm]			12	M16 16	M20 20	24		3

Table C7: Design method EN 1992-4

Characteristic resistance for shear loads - threaded rod

Table C8: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	V _{Rk,s}	[kN]	14	22	31	55	86	135	221
Partial safety factor	γMs	[-]				1,5			
Characteristic resistance of group of fa	steners					·			
Ductility factor k7 = 1,0 for steel with rup	ture elo	ngation /	A ₅ > 8%						
Steel failure with lever arm				-	-		-	-	
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	$M^{o}_{Rk,s}$	[N.m]	33	65	112	265	518	1013	2122
Partial safety factor	γMs	[-]				1,5			<u>.</u>
Concrete pryout failure									
Factor for resistance to pry-out failure	k8	[-]				2			
Concrete edge failure									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Outside diameter of fastener	d _{non}	ղ [mm]	8	10	12	16	20	25	32
Effective length of fastener	ł	f [mm]			min	(h _{ef} , 8 d	nom)		

E600+

Performances Design according to EN 1992-4 Characteristic resistance for shear loads - rebar

Annex C 7

Table C9: Displacement of threaded rod under tension and shear load Hammer drilling, dustless drilling

	110		Grinning	g, aao		i illing			
Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensio	n load								
Uncrad	cked concre	ete							
δ_{N0}	[mm/kN]	0,03	0,02	0,02	0,02	0,01	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,01	0,01
Cracke	ed concrete								
δ _{N0}	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02	0,02
δ _{N∞}	[mm/kN]	0,35	0,21	0,14	0,12	0,08	0,07	0,07	0,07
Shear	load								
δ_{V0}	[mm/kN]	0,71	0,45	0,31	0,17	0,11	0,07	0,06	0,05
δ _{V∞}	[mm/kN]	1,06	0,67	0,46	0,25	0,16	0,11	0,08	0,07

Table C10: Displacement of threaded rod under tension and shear load Diamond core drilling

	5				9				
Size		M8	M10	M12	M16	M20	M24	M27	M30
Tensio	n load								
Uncrac	cked concre	ete							
δ _{N0}	[mm/kN]	0,01	0,01	0,02	0,02	0,02	0,02	0,01	0,02
δ _{N∞}	[mm/kN]	0,09	0,07	0,05	0,04	0,03	0,02	0,02	0,02
Cracke	ed concrete								
δ _{N0}	[mm/kN]	0,03	0,04	0,04	0,04	0,03	0,03	0,04	0,04
δ _{N∞}	[mm/kN]	0,33	0,28	0,20	0,14	0,12	0,09	0,09	0,08
Shear	load								
δ _{V0}	[mm/kN]	0,71	0,45	0,31	0,17	0,11	0,07	0,06	0,05
δv∞	[mm/kN]	1,06	0,67	0,46	0,25	0,16	0,11	0,08	0,07

Table C11: Displacement of rebar under tension and shear load Hammer drilling, dustless drilling

			- ar initi iç	,		mg		
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensic	on load							
Uncra	cked concre	ete						
δ _{N0}	[mm/kN]	0,04	0,03	0,02	0,01	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,08	0,05	0,04	0,02	0,02	0,01	0,01
Cracke	ed concrete	•						
δ _{N0}	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02
δ _{N∞}	[mm/kN]	0,35	0,21	0,17	0,11	0,08	0,07	0,06
Shear	load							
δ _{V0}	[mm/kN]	0,38	0,24	0,17	0,10	0,06	0,04	0,02
δv∞	[mm/kN]	0,56	0,36	0,25	0,14	0,09	0,06	0,04

Table C12: Displacement of rebar under tension and shear load Diamond drilling

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
		20	010	012	010	020	025	0.02
lensic	on load							
Uncra	cked concre	ete						
δ _{N0}	[mm/kN]	0,02	0,02	0,02	0,01	0,01	0,01	0,01
δ _{N∞}	[mm/kN]	0,09	0,06	0,04	0,03	0,02	0,01	0,01
Crack	ed concrete	;						
δ _{N0}	[mm/kN]	0,04	0,03	0,03	0,02	0,02	0,01	0,01
δ _{N∞}	[mm/kN]	0,39	0,26	0,18	0,10	0,07	0,04	0,03
Shear	load							
δ _{V0}	[mm/kN]	0,38	0,24	0,17	0,10	0,06	0,04	0,02
δv∞	[mm/kN]	0,56	0,36	0,25	0,14	0,09	0,06	0,04

E600+

Performances

Displacements

Annex C 8

Size			M8	M10	M12	M16	M20	M24	M27	M3
Tension load					1					
Steel failure										
Characteristic resistance grade 4.6	NRk,s,eq,C1	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]	10	20	04	2,0		171	104	
Characteristic resistance grade 5.8	N _{Rk,s,eq,C1}	[kN]	18	29	42	79	123	177	230	28
Partial safety factor	γMs	[-]	10	20	12	1,			200	20
Characteristic resistance grade 8.8	NRk,s,eq,C1	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]			0.	1,		202	001	
Characteristic resistance grade 10.9	N _{Rk,s,eq,C1}	[kN]	37	58	84	157	245	353	459	56
Partial safety factor	γMs	[-]	•••		•	1,				
Characteristic resistance A2-70, A4-70	NRk,s,eq,C1	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]			00	1,8			021	000
Characteristic resistance A4-80	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	Υικ, <u>s,cq,o</u>	[-]			•		60			
Characteristic resistance 1.4529	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	39
Partial safety factor	γMs	[-]				1.		. –		
Characteristic resistance 1.4565	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	39
Partial safety factor	γMs	[-]				1.8			•=.	
Combined pullout and concrete cone fa		1	0/25 fc	or a wo	orkina	,	-	ars an	d 100	vea
Characteristic bond resistance					<u>-</u>					J • • •
Dry and wet concrete, Flooded hole	TRk n eg C1	[N/mm ²]	8,0	8,0	7,5	7,5	7,0	7,0	5,0	4,5
Installation safety factor	era,p,eq,or	[]	0,0	0,0	1,0	.,0	1,0	.,0	0,0	.,,
Dry, wet concrete	γinst	[-]				1.	0			
Hammer drilling – Flooded hole	γinst	[-]				1.				
Dustless drilling – Flooded hole	Yinst	[-]	1,2							
Shear load										
Steel failure without lever arm										
Characteristic resistance grade 4.6	V _{Rk,s,eq,C1}	[kN]	5	9	13	20	32	28	37	45
Partial safety factor	γMs	[-]	_			1,0				1
Characteristic resistance grade 5.8	V _{Rk,s,eq,C1}	[kN]	7	11	16	26	40	35	46	56
Partial safety factor	γMs	[-]					25			
Characteristic resistance grade 8.8	V _{Rk,s,eq,C1}	[kN]	11	17	25	41	64	56	73	90
Partial safety factor	γMs	[-]				1,				
Characteristic resistance grade 10.9	V _{Rk,s,eq,C1}	[kN]	14	22	32	51	80	71	92	11
Partial safety factor	γMs	[-]					50			1
Characteristic resistance A2-70 , A4-70	V _{Rk,s,eq,C1}	[kN]	10	15	22	36	56	49	64	79
Partial safety factor	γMs	[-]				1,			1	1
Characteristic resistance A4-80	V _{Rk,s,eq,C1}	[kN]	11	17	25	41	64	56	73	90
Partial safety factor	γMs	[-]			1		33		1 .	1
Characteristic resistance 1.4529	V _{Rk,s,eq,C1}	[kN]	10	15	22	36	56	49	64	79
Partial safety factor	γMs	[-]				1,				1
Characteristic resistance 1.4565	V _{Rk,s,eq,C1}	[kN]	10	15	22	36	56	49	64	79
Partial safety factor	γMs	[-]				,	56			
Characteristic shear load resistance V _{Rk}	_{,s,eq} in the T galvanize o					y follo	wing r	educti	on fac	tor f
Reduction factor for hot-dip galvanized rods	-		0,47	0,47	0,47	0 5/	0,54	0.88	0,88	0.8
			0,47	0,47	0,+1			0,00	0,00	0,0
Factor for annular gap	αgap	[-]				0,	.5			

E600+

Performances

Hammer drilling, Dustless drilling Seismic performance category C1 of threaded rod Annex C 9

Table C14: Seismic performance category C1 of rebar - Hammer drilling, Dustless drilling

Size			Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tension load								
Steel failure								
Rebar BSt 500 S	N _{Rk,s,eq,C1}	[kN]	43	62	111	173	270	442
Partial safety factor	γMs	[-]			1	,4		
Combined pullout and concrete cone	failure in co	ncrete C2	0/25 for	a workiı	ng life of	f 50 year	s and 10	0 years
Characteristic bond resistance								
Dry and wet concrete, Flooded hole	$ au_{Rk,p,eq,C1}$	[N/mm ²]	8,9	9,0	9,0	8,0	7,5	4,8
Installation safety factor								
Hammer drilling - Dry, wet concrete	γinst	[-]			1	,0		
Dustless drilling - Dry, wet concrete	γinst	[-]	1,2					
Flooded hole	γinst	[-]	1,2					
Shear load								
Steel failure without lever arm								
Rebar BSt 500 S	V _{Rk,s,eq,C1}	[kN]	16	23	41	69	67	111
Partial safety factor	γMs	[-]			1	,5		
Factor for annular gap	$lpha_{gap}$	[-]			0	,5		

E600+

Performances Hammer drilling, Dustless drilling Seismic performance category C1 of rebar

					M20
Tension load					
Steel failure		-			
Characteristic resistance grade 4.6	N _{Rk,s,eq,C2}	[kN]	34	63	98
Partial safety factor	γMs	[-]		2,00	
Characteristic resistance grade 5.8	NRk,s,eq,C2	[kN]	42	79	123
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance grade 8.8	NRk,s,eq,C2	[kN]	67	126	196
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance grade 10.9	N _{Rk,s,eq,C2}	[kN]	84	157	245
Partial safety factor	γMs	[-]		1,33	
Characteristic resistance A2-70, A4-70	NRk,s,eq,C2	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,87	
Characteristic resistance A4-80	N _{Rk,s,eq,C2}	[kN]	67	126	196
Partial safety factor	γMs	[-]		1,60	
Characteristic resistance 1.4529	N _{Rk,s,eq,C2}	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance 1.4565	N _{Rk,s,eq,C2}	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,87	
Combined pullout and concrete cone fail			or a working life		100 vears
Characteristic bond resistance		010 010/10/	or a normig in	o or oo youro una	loo jouro
Dry and wet concrete, Flooded hole	TPk p og C2	[N/mm ²]	3,2	3,7	4,2
Installation safety factor	Utk,p,cq,02		0,2	0,1	-,=
Dry and wet concrete, Flooded hole	γinst	[-]		1,0	
Dustless drilling – Flooded hole	γinst	[-]		1,2	
	mot			- ,=	
Shear load					
Steel failure without lever arm					
Characteristic resistance grade 4.6	V _{Rk,s,eq,C2}	[kN]	13	18	28
Partial safety factor	γMs	[-]		1,67	
Characteristic resistance grade 5.8	V _{Rk,s,eq,C2}	[kN]	16	22	35
Partial safety factor	γMs	[-]		1,25	
Characteristic resistance grade 8.8	V _{Rk,s,eq,C2}	[kN]	25	36	56
Partial safety factor	γMs	[-]		1,25	
Characteristic resistance grade 10.9	V _{Rk,s,eq,C2}	[kN]	32	45	70
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance A2-70 , A4-70	V _{Rk,s,eq,C2}		22	31	49
Partial safety factor	γMs			1,56	
Characteristic resistance A4-80	V _{Rk,s,eq,C2}	[kN]	25	36	56
Partial safety factor	γMs	[-]		1,33	
Characteristic resistance 1.4529	V _{Rk,s,eq,C2}	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,25	10
Characteristic resistance 1.4565	V _{Rk,s,eq,C2}	[kN]	22	31	49
Partial safety factor	v r.κ,s,eq,cz γMs	[-]		1.56	
Characteristic shear load resistance V _{Rk,s} ,			multiplied by fol	1	etor for hot-di
	alvanized co			lowing roudolloir ie	
Reduction factor for hot-dip galvanized rods		[-]	0,46	0,61	0,61
Factor for annular gap		[-]	0,10	0,5	0,01
	αgap	[-]		0,5	
Table C16: Displacement under ten	sile and sh	ear load -	seismic categ	ory C2 of threa	ded rod
Size M12 M16 M2			-	-	
δ _{N,eq(DLS)} [mm] 0,20 0,40 0,7					
$\delta_{N,eq(ULS)}$ [mm] 0,76 0,74 1,6					
$\delta_{V,eq(DLS)}$ [mm] 5,29 4,12 4,9					
δ _{V,eq(ULS)} [mm] 10,20 9,05 10,					
		_			
	· · · · · · · · · · · · · · · · · · ·	alongatio	n after fractur	Δ. > 9 %	
The anchor shall be used with minim	um rupture	elongation		$5 A_5 = 5 / 0.$	
	um rupture	elongation			
The anchor shall be used with minim 600+	um rupture	eloligatio			

Hammer drilling, Dustless drilling Seismic performance category C2 of threaded rod